જો $f(y) = 1 - (y - 1) + {(y - 1)^2} - {(y - 1)^{^3}} + ... - {(y - 1)^{17}},$ હોય તો $y^2$ નો સહગુણક મેળવો.
$^{17}{C_2}$
$^{17}{C_3}$
$^{18}{C_2}$
$^{18}{C_3}$
જો $1+\left(2+{ }^{49} C _{1}+{ }^{49} C _{2}+\ldots .+{ }^{49} C _{49}\right)\left({ }^{50} C _{2}+{ }^{50} C _{4}+\right.$ $\ldots . .+{ }^{50} C _{ so }$ ) ની કિમંત $2^{ n } . m$ હોય તો $n+m$ ની કિમંત મેળવો. કે જ્યાં $m$ એ અયુગ્મ છે.
$(x-1) (x- 2) (x-3)...............(x-10)$ ના વિસ્તરણમાં $x^8$ નો સહગુણક મેળવો
ધારો કે $m, n \in N$ અને ગુ.સા.અ. $\operatorname{gcd}(2, n)=1$. જો $30\left(\begin{array}{l}30 \\ 0\end{array}\right)+29\left(\begin{array}{l}30 \\ 1\end{array}\right)+\ldots+2\left(\begin{array}{l}30 \\ 28\end{array}\right)+1\left(\begin{array}{l}30 \\ 29\end{array}\right)= n .2^{ m }$ તો $n + m=.......$
(અહીં $\left.\left(\begin{array}{l} n \\ k \end{array}\right)={ }^{ n } C _{ k }\right)$
વિધેય $\frac{1}{{\left( {1 - ax} \right)\left( {1 - bx} \right)}}$ નુ $x$ ની ધાતાકમાં વિસ્તરણ ${a_0} + {a_1}x + {a_2}{x^2} + \;{a_3}{x^3} + \; \ldots......$ હોય તો ${a_n}$ મેળવો.
$^{10}{C_1}{ + ^{10}}{C_3}{ + ^{10}}{C_5}{ + ^{10}}{C_7}{ + ^{10}}{C_9} = $